Scaling down the Perdew-Zunger self-interaction correction in many-electron regions.
نویسندگان
چکیده
Semilocal density functional approximations (DFAs) for the exchange-correlation energy suffer from self-interaction error, which is believed to be the cause of many of the failures of common DFAs, such as poor description of charge transfer and transition states of chemical reactions. The standard self-interaction correction (SIC) of Perdew and Zunger mends some of these failures but spoils such essential properties as thermochemistry and equilibrium bond lengths. The Perdew-Zunger SIC seems to overcorrect many-electron systems. In this paper, we propose a modified SIC, which is scaled down in many-electron regions. The new SIC has an improved performance for many molecular properties, including total energies, atomization energies, barrier heights of chemical reactions, ionization potentials, electron affinities, and bond lengths. The local spin-density approximation (LSDA) benefits from SIC more than higher-level functionals do. The scaled-down SIC has only one adjustable parameter. Rationalization of the optimal value of this parameter enables us to construct an almost-nonempirical version of the scaled-down SIC-LSDA, which is significantly better than uncorrected LSDA and even better than the uncorrected generalized gradient approximation. We present an analysis of the formal properties of the scaled-down SIC and define possible directions for further improvements. In particular, we find that exactness for all one-electron densities does not guarantee correct asymptotics for the exchange-correlation potential of a many-electron system.
منابع مشابه
Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H2+, He2+, LiH+, and Ne2+.
The common density functionals for the exchange-correlation energy make serious self-interaction errors in the molecular dissociation limit when real or spurious noninteger electron numbers N are found on the dissociation products. An "M-electron self-interaction-free" functional for positive integer M is one that produces a realistic linear variation of total energy with N in the range of M-1<...
متن کاملTwo Avenues to Self-Interaction Correction within Kohn-Sham Theory: Unitary Invariance is the Shortcut
The most widely-used density functionals for the exchange-correlation energy are inexact for one-electron systems. Their self-interaction errors can be severe in some applications. The problem is not only to correct the self-interaction error, but to do so in a way that will not violate size-consistency and will not go outside the standard Kohn-Sham density functional theory. The solution via t...
متن کاملThe effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules.
Self-consistent calculations using the Perdew-Zunger self-interaction correction (PZ-SIC) to local density and gradient dependent energy functionals are presented for the binding energy and equilibrium geometry of small molecules as well as energy barriers of reactions. The effect of the correction is to reduce binding energy and bond lengths and increase activation energy barriers when bond br...
متن کاملImplementation and reassessment of the Perdew-Zunger self-interaction correction
Density functional theory (DFT) using semi-local functional approximations can describe many chemical properties to high accuracy, but in some cases large and even qualitative errors emerge. Some of these errors are ascribed to an unphysical interaction of each electron with itself, which is present as a result of the approximations made in the exchange-correlation functional. The Perdew-Zunger...
متن کاملSelf-interaction corrected density functional calculations of molecular Rydberg states.
A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 124 9 شماره
صفحات -
تاریخ انتشار 2006